

DATA SHEET

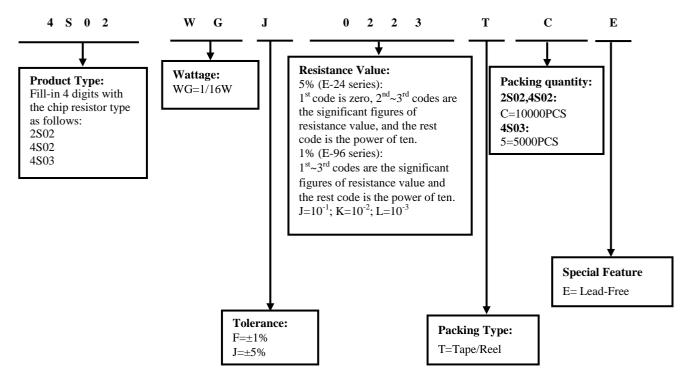
Product Name Anti-Sulfurized Thick Film Chip Resistors Array-Convex Terminal

Part Name 2S02/4S02/4S03 Series File No. SMD-SP-023

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

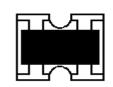
Tel	+86 512 5763 1411 / 22 /33
Email	marketing@uni-royal.cn
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.
	Aeon Technology Corporation
	Royal Electronic Factory (Thailand) Co., Ltd.
	Royal Technology (Thailand) Co., Ltd.



1. Scope 1.1 This datasheet is the characteristics of Anti-Sulfurized Thick Film Chip Resistors Array-Convex Terminal manufactured by UNI-ROYAL. 1.2 Anti-Sulfidation 1.3 Suitable for reflow & wave soldering 1.4 Application car, power 2. Part No. System Part No. includes 14 codes shown as below: 2.1 1st~4th codes: Part name. E.g.: 2S02, 4S02, 4S03. 2.2 5th~6th codes: Power rating. E.g.: W=Normal Size, WG=1/16W 2.3 7th code: Tolerance. E.g.: D=±0.5% $F=\pm1\%$ $G=\pm 2\%$ J=+5% $K = \pm 10\%$ 2.4 8th~11th codes: Resistance Value. 2.4.1 If value belongs to standard value of E-24 series, the 8^{th} code is zero, $9^{th} \sim 10^{th}$ codes are the significant figures of resistance value, and the 11th code is the power of ten. 2.4.2 If value belongs to standard value of E-96 series, the 8th~10th codes are the significant figures of resistance value, and the 11th code is the power of ten. 2.4.311th codes listed as following: $0=10^{0}$ $1=10^{1}$ K=10⁻² L=10⁻³ M=10⁻⁴ $2 = 10^2$ $3 = 10^3$ $4 = 10^4$ $5 = 10^5$ $6 = 10^{6}$ $J = 10^{-1}$ 2.5 $12^{th} \sim 14^{th}$ codes. 2.5.1 12th code: Packaging Type. E.g.: C=Bulk T=Tape/Reel 2.5.2 13th code: Standard Packing Quantity. 4=4,000pcs 5=5,000pcs C=10,000pcs D=20,000pcs E=15,000pcs Chip Product: BD=B/B-20000pcs TC=T/R-10000pcs 2.5.3 14th code: Special features. E = Environmental Protection, Lead Free, or Standard type.

3. Ordering Procedure

(Example: 4S02 1/16W ±5% 22KΩ T/R-10000)

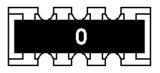

- 4. <u>Marking</u>
- 4.1 Normal for 2S02 sizes, no marking on the body.0 Ω resistors is no marking too
- $4.2\pm5\%$ Tolerance of 4S02 $\sim4S03$ size: the first two digits are significant figures of resistance and the third denotes number of zeros following .
- 4.3 $\pm 1\%$ Tolerance of 4S02, 4S03 size: first three

digits are significant figures of resistance and the

fourth denotes number of zeros following

Example: 4S02、4S03

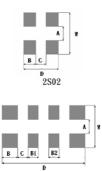
4.4. 0Ù: Normal of 4S02 \ 4S03size, the marking as following: Example: 4S02 \ 4S03



 $333 \rightarrow 33 \mathrm{K}\Omega$

 $2701 \rightarrow 2.7 \mathrm{K}\Omega$

5. Ratings & Dimension


Type	2S02	4802	4\$03
Size	0402×2	0402×4	0603×4
Dimension (mm)	1.0±0.1 0.15±0.05 0.17±0.1 0.17±0.1 0.17±0.1 0.25±0.1	91:07:00 0.05 0.	0.3020.15 0.5020.15 0.5020.15 0.5020.15 0.5040.10
Equivalent Circuit Diagram	4 3 R1 R2 1 2 R1-F2	8 7 6 5 R1 R2 R3 R4 1 2 3 4 R1-R2-R3-R4	B R1 R2 R4 R2 R4 R3 R2 R4 R3 R2 R4 R1 R2 R4 R1 R2 R4 R1 R1 R2 R4 R1 R1 R3 R1 R3 R1 R3 R1 R3 R1 R3 R1 R1 R3 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1

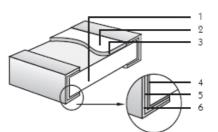
Туре	2802	4802	4\$03		
Power Rating at 70°C	1/16W	1/16W	1/16W		
Resistance Value of jumper	$<$ 50m Ω	$<$ 50m Ω	$< 50 \mathrm{m}\Omega$		
Jumper Rated Current	1A	1A	1A		
Max Working Voltage	50V	50V	50V		
Max Overload Voltage	100V	100V	100V		
Dielectric Withstanding Voltage	100V	100V	300V		
±1%	10Ω-1ΜΩ	10Ω-1ΜΩ	1Ω-1ΜΩ		
±5%	10Ω-1ΜΩ	10Ω-1ΜΩ	1Ω-1ΜΩ		
Operating Temperature	-55 ~ +155 ℃				

6. <u>Soldering pad size recommended</u>

True			D	imension(n	ım)		
Туре	А	В	B1	B2	W	С	D
2S02	0.5±0.1	0.33±0.1	/	/	2.0±0.1	0.34±0.1	1.0±0.1
4S02	0.5±0.1	0.3±0.1	0.28±0.1	0.28±0.1	2.0±0.1	0.22±0.1	1.82±0.1
4S03	1.0±0.1	0.4±0.1	0.4±0.1	0.4±0.1	2.6±0.1	0.4±0.1	2.8±0.1

4\$02/4\$03

7. Derating Curve


Power rating will change based on continuous load at ambient temperature from -55 to 155° C. It is constant between -55 to 125° C(2S02,4S02 is from -55°C to 70°C), and derate to zero when Temperature rise from 125 to 155° C(2S02,4S02 is from 70°C to 155° C).

Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula: $RCWV = \sqrt{P \times R}$

Remark: RCWV: Rating Continuous Working Voltage (Volt.) P: power rating (Watt) R: nominal resistance (Ω) In no case shall the rated DC or RMS AC continuous working voltage be greater than the applicable maximum value. The overload voltage is 2.5 times RCWV or Max. Overload voltage whichever is lower.

8. Structure

1: High purity alumina substrate

 $(96\%AL_2O_3 \circ 0.3\pm 0.1\%CaO \circ 1.0\pm 0.3\%MgO \circ 2.1\pm 0.05\%SiO_2)$

- 2: Protective covering
- 3:Resistive covering (Ag for 0Ω)
- 4: Termination (inner) Ag/Pd
- 5: Termination (between) Ni plating
- 6: Termination (outer) Sn plating

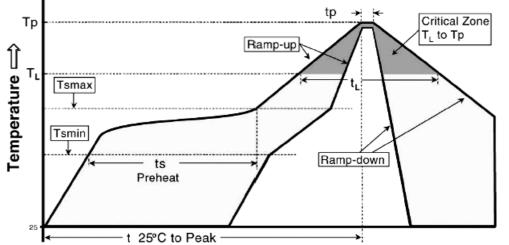
9. <u>Performance Specification</u>

Characteristic	Limits	Ref. Standards	Test Method
Operational life	$\begin{array}{l} \pm 1\%: \pm (1.0\% + 0.1\Omega) \\ \pm 5\%: \pm (3.0\% + 0.1\Omega) \\ < 100 \text{m}\Omega \end{array}$	MIL-STD-202	125°C, at 36% of operating power, 1000H(1.5 hours "ON", 0.5 hour "OFF"). Apply to rate current for 0 Ω
Electrical Characterization	1Ω ≤ R ≤10Ω:±200ppm /℃ 10Ω <r 10m="" td="" ω:±00ppm="" ℃<="" ≤=""><td>User Spec</td><td>Parametrically test per lot and sample size requirements, summary to show Min, Max, Mean and Standard deviation at room as well as Min and Max operating temperatures.</td></r>	User Spec	Parametrically test per lot and sample size requirements, summary to show Min, Max, Mean and Standard deviation at room as well as Min and Max operating temperatures.
Short-time overload	$\pm 1\%$: ±(1.0%+0.05Ω) ±5%: ±(2.0%+0.05Ω)	JIS-C-5201& JIS-C-5202	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max. Overload Voltage whichever less for 5 seconds
	<50mΩ		Apply max Overload current for 0Ω
External Visual	No Mechanical Pamage	MIL-STD-883 Method 2009	Electrical test not required. Inspect device construction, marking and workmanship
Physical Dimension	Reference 5. Dimension Standards	JESD22 MH Method JB- 100	Verify physical dimensions to the applicable device detail specification. Note: User(s) and Suppliers spec. Electrical test not required.

Resistance to Solvent	Marking Unsmeared	MIL-STD-202 Method 215	Note: Add Aqueous wash chemical – OKEM Clean or equivalent. Do not use banned solvents.
Terminal Strength	Not broken	JIS-C-6429	Force of 1.8kg for 60 seconds.
High Temperature Exposure	±(1%+0.1Ω)	MIL-STD-202 Method 108	1000hrs. @T=155°C.Unpowered. Measurement at 24±2 hours after test conclusion.
(Storage)	<50mΩ		Apply to rate current for 0Ω
			1000 Cycles (-55 $^{\circ}$ C to +155 $^{\circ}$ C). Measurement
Temperature	$\pm (1\% + 0.05\Omega)$	JESD22 Method JA-104	at 24 ± 2 hours after test conclusion.
Cycling	<50mΩ		Apply to rate current for 0Ω
			1000 hours 85°C,85%RH.
			Note: Specified conditions: 10% of operating
	$\pm 1\%$: $\pm (1.0\% \pm 0.05\Omega)$		power.
Biased Humidity	±5%: ±(3.0%+0.05Ω)	MIL-STD-202 Method 103	Measurement at 24 ± 2 hours after test
			conclusion.
	<100mΩ	-	Apply to rate current for 0Ω
			5g's for 20 min., 12cycle each of 3 orientations
			Note: Use 8"*5"PCB. 031" thick 7 secure
Vibration	±(1%±0.1Ω)	MIL-STD-202 Method 204	points onone long side and 2 secure points at
Violation		WIE 51D 202 Wethou 204	corners of opposite sides. Parts mounted within
			2' from any secure point. Test from 10-2000Hz
			-55°C/+155°C,Note: Number of cycles required
	±(1%+0.1Ω)		-300, Maximum transfer time -20 seconds,
Thermal Shock	<u>(1/0+0.122)</u>	MIL-STD-202 Method 107	Dwell time -15 minutes. Air-Air.
	<100mΩ	-	Apply to rate current for 0Ω
	<10011122		
ESD	±(1.0%+0.1Ω)	AEC-Q200-002	With the electrometer in direct contact with the discharge tip, verify the voltage setting at levels of $\pm 500V,\pm 1KV,\pm 2KV,\pm 4KV,\pm 8KV$, The electrometer reading shall be within $\pm 10\%$ for voltages from 500V to $\leq 800V$.
Solderability	Coverage must be over 95%.	J-STD-020E	For both leaded & SMD. Electrical test not required. Magnification 50X. Conditions: a) Method B 4hrs at 155 °C dry heat, the dip in bath with 245 °C,5s. b) b) Method D: at 260 °C, 30±0.5s.
Flammability	No ignition of the tissue paper or	UL-94	V-0 or V-1 are acceptable. Electrical test not
	scorching or the pinewood board		required.
Board Flex	±(1%+0.05Ω)	JIS-C-6429	2mm (Min)
	<50mΩ		Apply to rate current for 0Ω
Flame Retardance	No flame	AEC-Q200-001	Temperature sensing at 500°C, Voltage power subjected to 32VDC current clamped up to 500ADC and decreased in 1.0VDC/hour.
Resistance to Soldering Heat	±(1%+0.05Ω)	MIL-STD-202 Method 210	Condition B No per-heat of samples. Note: Single Wave Solder-Procedure 2 for SMD and Procedure 1 for Leaded with solder within 1.5mm of device body.
	<50mΩ		Apply to rate current for 0Ω

Sulfuration test : Soaked in industrial oil with sulfur substance 3.5% contained $105^{\circ}C \pm 3^{\circ}C 500h$

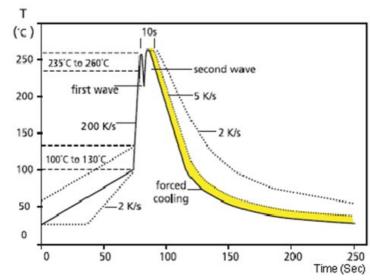
 $\Delta R \leq \pm (5\% + 0.05 \Omega)$



10. Soldering Condition

(This is for recommendation, please customer perform adjustment according to actual application)

10.1 Recommend Reflow Soldering Profile : (solder : Sn96.5 / Ag3 / Cu0.5)


Time 💳>

Profile Feature	Lead (Pb)-Free solder
Preheat:	
Temperature Min (Ts _{min})	150°C
Temperature Max (Ts _{max})	200°C
Time $(Ts_{min} \text{ to } Ts_{max})$ (ts)	60 -120 seconds
Average ramp-up rate:	
(Ts max to Tp)	3° C / second max.
Time maintained above :	
Temperature (T _L)	217°C
Time (t_L)	60-150 seconds
Peak Temperature (Tp)	260°C
Time within $^{+0}_{-5}$ °C of actual peak Temperature (tp) ²	10 seconds
Ramp-down Rate	6°C/second max.
Time 25°C to Peak Temperature	8minutes max.

Allowed Re-flow times : 2 times

Remark : To avoid discoloration phenomena of chip on terminal electrodes, please use N2 Re-flow furnace .

10.2 Recommend Wave Soldering Profile : (Apply to 0603 and above size)

G

±0.1

4.0

W

±0.2

8.0

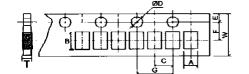
Т

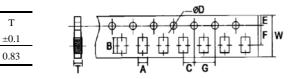
±0.1

11. Packing of Surface Mount Resistors

11.1 Dimension of Paper Taping :(Unit: mm)

Toma	А	В	С	4D+0.1	Е	F	G	W	Т
Туре	±0.2	±0.2	±0.05	$\Phi D_{_0}^{+0.1}$	±0.1	±0.05	±0.1	±0.2	±0.1
2802	1.2	1.2	2.0	1.5	1.75	3.5	4.0	8.0	0.45
4S02	1.2	2.2	2.0	1.5	1.75	3.5	4.0	8.0	0.70


 $\Phi D_{0}^{+0.1}$


1.5

Е

±0.1

1.75

11.2 Dimension of Reel : (Unit: mm)

В

±0.2

3.60

С

±0.05

2.0

А

±0.2

2.0

Туре

4S03

Туре	Qty/Reel	A ± 0.5	B ± 0.5	$C\pm0.5$	D ± 1.0	$M\pm 2.0$	$W \pm 1.0$
2802	10,000PCS	2.0	13.0	21.0	60.0	178.0	10.0
4S02	10,000PCS	2.0	13.0	21.0	60.0	178.0	10.0
4S03	5,000PCS	2.0	13.0	21.0	60.0	178.0	10.0

12. Note

12.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35°C under humidity between 25 to 75% RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.

F

±0.05

3.5

12.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.

12.3. Storage conditions as below are inappropriate:

a. Stored in high electrostatic environment

b. Stored in direct sunshine, rain, snow or condensation.

12.4 This product is used for automotive electronics. UNI-ROYAL will not be responsible for any damage, expense or loss caused by the use of this specification in any special environment. This series of products are suitable for automotive electronics applications, as shown below, If there are other applications, you need to confirm with UNI-ROYAL whether they are applicable:

a. Control unit for information, entertainment, navigation, audio;

b. Control unit for comfortable doors, windows, seat;

c. Control unit for internal lighting.

13. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~7	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.18, 2019	Haiyan Chen	Yuhua Xu
3	1.Modify the reflow curve and add the wave soldering curve	6	Apr.30, 2020	Haiyan Chen	Yuhua Xu
	2. Notes for improvement				

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice