

DATA SHEET

Product Name High Power Wire-wound Aluminum Shell Resistance

Part Name HAWR Series File No. DIP-SP-060

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

High Power Wire-wound Aluminum Shell Resistance

1. Scope:

- 1.1 This datasheet is the characteristics of High Power Wire-wound Aluminum Shell Resistance manufactured by UNI-ROYAL.
- 1.2 Anti-vibration, high stability.
- 1.3 Excellent transient current impact capability, suitable for the start of the inverter under harsh conditions.
- 1.4 Application: Frequency Conversion Equipment, such as Elevator, Freezer, Crane, Lift etc.
- 1.5 Compliant with RoHS directive.
- 1.6 Halogen free requirement.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 High Power Wire-wound Aluminum Shell Resistance the 1st to 4rd digits are to indicate the product type.

Example: HAWR= High Power Wire-wound Aluminum Shell Resistance

- $2.25^{th} \sim 6^{th}$ digits:
- 2.2.1 This is to indicate the wattage or power rating. To dieting the size and the numbers,

The following codes are used; and please refer to the following chart for detail:

W=Normal Size; S=Small Size; U=Extra Small Size; "1"~"G"to denotes"1"~"16"as Hexadecimal:

 $1/16W \sim 1/2W (< 1W)$

Wattage	1/2	1/3	1/4	1/5	1/6	1/8	1/10	1/16	
Normal Size	W2	W3	W4	W5	W6	W8	WA	WG	
Small Size	S2	S3	S4	S5	S6	S8	SA	SG	
V~16W (≧1W)							•		
Wattage	1	2	3	5	7	8	9	10	15
Normal Size	1W	2W	3W	5W	7W	8W	9W	AW	FW
Small Size	1S	2S	3S	5S	7S	8S	9S	AS	FS

2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance.

$$J=\pm 5\%$$
 $K=\pm 10\%$

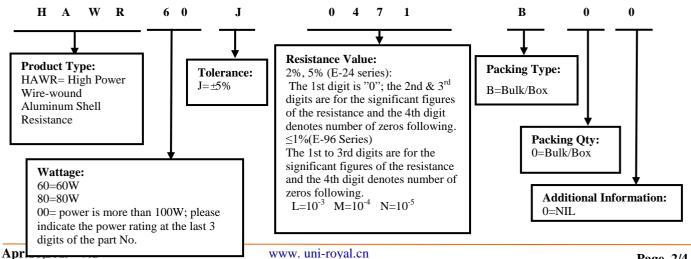
- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For the standard resistance values of E-24 series, the 8th digit is "0", the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the zeros following;

For the standard resistance values of E-96 series, the 8th digit to the 10th digits is to denote the significant figures of the resistance and the 11th digit is the zeros following.

2.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit:

$$0 = 10^{0} \qquad 1 = 10^{1} \quad 2 = 10^{2} \qquad 3 = 10^{3} \qquad 4 = 10^{4} \qquad 5 = 10^{5} \qquad 6 = 10^{6} \qquad J = 10^{-1} \qquad K = 10^{-2} \qquad L = 10^{-3} \qquad M = 10^{-4} \quad N = 10^{-5} \quad P = 10^{-6} \qquad M = 10^{-6} \qquad M = 10^{-6} \qquad N = 10^$$

2.4.3 The 12th, 13th & 14th digits.

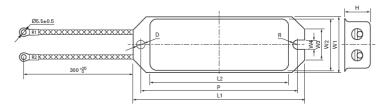

The 12th digit is to denote the Packaging Type with the following codes:

B=Bulk /Box

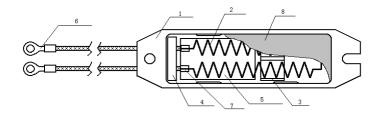
- 2.4.4 Current Sense Resistors, The 13th digit should be filled with "0"
- 2.4.5 Current Sense Resistors, The 14th digit should be filled with "0"

3. Ordering Procedure

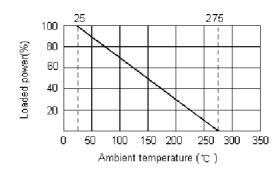
(Example: HAWR $60W \pm 5\% 470 \Omega$ B/B)



High Power Wire-wound Aluminum Shell Resistance


4. Dimension

								Uı	nit:mm
Type	L1 ±1	L2±2	P±1	W1±1	W2±1	W3±0.5	W4±0.2	D±0.2	H±1
HAWR60W	100	75.5	90	30	28	16.5	4.5	4.6	16.5
HAWR80W	130.5	104.5	117.5	43	38.5	22	6.0	6.0	21
HAWR100W	130	110	118	42	39	22.5	6.0	6.0	20


 $[{]m *Remark:}$ For further information, please contact our sales team.

5. Structure

No.	Name	Material Generic Name	Remark
1	Aluminous crust	Aluminum	
2	Alloy wire	Ni Cr	
3	Pedestal	Al ₂ O ₃ CaO	
4	Ceramic parts	Al ₂ O ₃ CaO	
5	Mica	Si Al	
6	Terminal	Cu Sn	
7	Terminal	Cu Sn	
8	Filling Materials	SiO_2	

6. Derating Curve

6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.) R= nominal resistance (OHM)

High Power Wire-wound Aluminum Shell Resistance

7. Performance Specification

Characteristic	Limits	Test method (GB/T 5729&JIS-C-5201&IEC60115-1)			
Temperature Coefficient	±350 PPM/°C	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2\text{-}R_1}{R_1(t_2\text{-}t_1)} \times 10^6 \text{ (PPM/°C)}$ $R_1: \text{Resistance Value at room temperature } (t_1) ;$ $R_2: \text{Resistance at test temperature}$ $(\text{Upper limit temperature or Lower limit temperature})$ $t_{1:} + 25 \text{ °C or specified room temperature}$ $t_{2:} \text{ Upper limit temperature or Lower limit temperature test temperature}$			
Short-time overload	Resistance change rate is: $\pm (5\% + 0.05\Omega)$ max. With no evidence of mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or the max. Overload voltage respectively specified in the above list, whichever less for 5 seconds.			
Humidity (Steady State)	Resistance change rate is: $\pm (5\% + 0.05\Omega)$ max. With no evidence of mechanical damage.	7.9 Resistance change after 240 hours without load in a humidity test chamber controlled at $40^{\circ}\text{C} \pm 2^{\circ}\text{C}$ and 90 to 95% relative humidity.			
Load life	Resistance change rate is: $\pm (5\% + 0.05\Omega)$ max. With no evidence of mechanical damage.	4.25.1 Permanent Resistance change after 1000 hours operating at RCWV or Max. Working Voltage whichever less with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at 70 ± 2 °C ambient.			
Rapid change of temperature	Resistance change rate is: $\pm (5\% + 0.05\Omega)$ max. With no evidence of mechanical damage.	4.19 30 min at -55 ℃ and 30 min at 155 ℃; 100 cycles.			

8. <u>Note</u>

- 8.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 °C under humidity between 25 to 75%RH.

 Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 8.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 8.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , etc.

9. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~4	Apr.16, 2019	Haiyan Chen	Yuhua Xu
1	That version	1~4	Apr.10, 2019	Tranyan Chen	T ullua Au

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice