

DATA SHEET

Product Name Radial Terminal Type

Part Name PRVB Series File No. DIP-SP-041

Uniroyal Electronics Global Co., Ltd.

88 Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry (kunshan) co., ltd.

Uniroyal Electronics Industry Co., Ltd.

Uniroyal Electronics Global Co.,Ltd Shenzhen Branch

Aeon Technology Corporation

Uniroyal Electronics Global Co.,Ltd Xiamen Branch

Kunshan Foss Electronic material Co., Ltd. Royal Electronic Factory (thailand) co., ltd

1. Scope:

- 1.1 This datasheet is the characteristics of Radial Terminal Type-PRVB Series Resistors manufactured by UNI-ROYAL.
- 1.2 Self-Extinguishing.
- 1.3 Extremely small & sturdy mechanically safe.
- 1.4 Excellent flame & moisture resistance
- 1.5 Too low or too high values on Wire-wound & Power-film type can be supplied on a case to case basis.
- 1.6 Compliant with RoHS directive.
- 1.7 Halogen free requirement.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 1th ~4th digits

This is to indicate the Chip Resistor. Example: PRVB= Radial Terminal Type-PRVB Series Resistors

 $2.2.5^{th} \sim 6^{th}$ digits:

 $1W\sim16W \ (\ge 1W)$

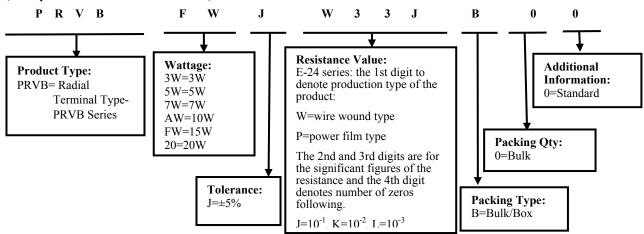
Wattage	3	5	7	10	15
Normal Size	3W	5W	7W	AW	FW

2.2.1 For power rating of 1 watt to 16 watt, the 5th digit will be a number or a letter code and the 6th digit will be the letters of W.

Example: 5W=5W

- 2.2.2 For power rating between 20 watt to 99 watt, the 5th and the 6th digit will show the whole numbers of the power rating itself Example: 20=20W
- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm5\%$ $K=\pm10\%$
- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For Cement Fixed Resistors the 8th digits will be coded with "W"or "P"to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor product. The 9th to 11th please refer to point a) of item 4.

Example:

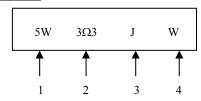

- 2.5 The 12th, 13th & 14th digits.
- 2.5.1 The 12th digit is to denote the Packaging Type with the following codes:

B=Bulk/Box

- 2.5.2 The 13th digit is normally to indicate the Packing Quantity, This digit should be filled with "0" for the Cement products with "Bulk/Box" packing requirements.
- 2.5.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes or standard product Example: 0= standard product

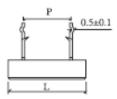
3. Ordering Procedure

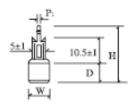
(Example: PRVB 15W \pm 5% 3.3 Ω B/B)



4. Marking

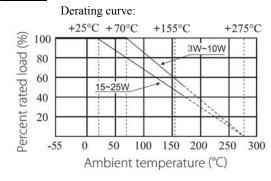
Code description and regulation:

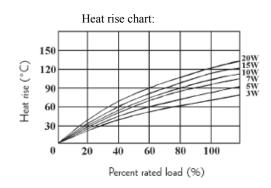

- 1. Wattage Rating
- 2. Nominal Resistance Value
- 3. Resistance Tolerance. J: $\pm 5\%$; K: $\pm 10\%$
- 4. Pattern:


M: Power film

W: Wire wound Color of marking: Black Ink

Note: The marking code shall be prevailed in kind!


5. Dimension



Туре	Dimension(mm)						Resistance Range	
	W±1	D±1	L±1	P±1	P1±0.2	H±1	Wire Wound	Power Film
PRVB 3W	10	9	22	9.5	1.3	25	0.1Ω-47Ω	48Ω-150ΚΩ
PRVB 5W	10	9	27/25	15/9.5	1.3	25	0.1Ω-120Ω	121Ω-200ΚΩ
PRVB 7W	10	9	35	22	1.3	25	0.1Ω -560 Ω	561Ω-200ΚΩ
PRVB 10W	10	9	48	35/32	1.3	25	1Ω -820 Ω	821Ω-200ΚΩ
PRVB 15W	12.5	11.5	48	32	1.5	27.5	1Ω-1ΚΩ	1.1ΚΩ-200ΚΩ
PRVB 20W	12.5	13.5	63	42	1.5	29.5	1Ω-1.2ΚΩ	1.3ΚΩ-200ΚΩ

6. Derating Curve

6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.)

R= nominal resistance (OHM)

7. Performance Specification

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)			
Temperature Coefficient	$\ge 20\Omega$: ±350PPM/°C max <20Ω: ±400PPM/°C max	4.8 Natural resistance changes per temp. Degree centigrade $ \frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (PPM/°C)} $ $ R_1: \text{ Resistance Value at room temperature } (t_1); $ $ R_2: \text{ Resistance at test temperature } (t_2) $ $ t_1: +25°C \text{ or specified room temperature } t_2: \text{ Test temperature } (-55°C \text{ or } 125°C) $			
Short-time overload	Resistance change rate must be in $\pm (5\% + 0.05\Omega)$, and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max.Overload Votage whichever less for 5 seconds.			
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Resistors shall be clamped in the trough of a 90°metallic V-block and shall be tested at AC potential respectively specified in the above list for 60-70 seconds.for cement fixed resistors the testing voltage is 1000V.			
Resistance to soldering heat	Resistance change rate must be in \pm (1%+0.05 Ω), and no mechanical damage.	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in260°C±5°C solder for 10±1 seconds.			
Solderability	95% coverage Min.	4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder: 245°C±3°C Dwell time in solder: 2~3seconds.			
Terminal strength	No evidence of mechanical damage	4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.			
Humidity (Steady state)	Resistance change rate must be in $\pm (5\%+0.05\Omega)$, and no mechanical damage.	4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at 40±2°C and 90~95%RH relative humidity			
Load life in humidity	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 \text{K}\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 \text{K}\Omega \Delta R/R$: $\pm 10\%$	7.9 Resistance change after 1000 hours (1.5 hours "ON" , 0.5 hours "OFF") at RCWV or Max.Working Voltage whichever less in a humidity test chamber controlled at 40±2°C and 93%±3% RH.			
Load life	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100K\Omega \Delta R/R$: $\pm 10\%$	4.25.1 Permanent Resistance change after 1000 hours operating at RCWV or Max.Working Voltage whichever less with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at $25\pm2^{\circ}\text{C}$ or $70\pm2^{\circ}\text{C}$ ambient.			
Low Temperature Storage	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 \text{K}\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 \text{K}\Omega \Delta R/R$: $\pm 10\%$	IEC 60068-2-1 (Aa) Lower limit temperature, for 2H.			
High Temperature Exposure	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 \text{K}\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 \text{K}\Omega \Delta R/R$: $\pm 10\%$	MIL-STD-202 108A Upper limit temperature , for 16H.			

8. <u>Note</u>

- 8.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35°C under humidity between 25 to 75%RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 8.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 8.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , Br etc.

9. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~5	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.26, 2019	Haiyan Chen	Yuhua Xu
3	Modify characteristic	4	Nov.20,2020	Song Nie	Yuhua Xu
4	Modify the temperature coefficient test conditions	4	Nov.07, 2022	Haiyan Chen	Yuhua Xu
5	1.Modify derating curve 2.Modify the load life test conditions	3 5	Sep.27, 2024	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice